162 research outputs found

    Resistive ballooning modes in line-tied coronal arcades

    Get PDF
    The equations describing the linear evolution of resistive ballooning modes are obtained by using a modified WKB expansion in the short perpendicular wavelength, while variations of the perturbations along the field are described by a slowly varying amplitude, on which the tying boundary conditions are imposed. In general, given an equilibrium, there are certain ranges of magnetic surfaces for which the system predicts instability even without dissipation. The main conclusion is that within the resistive MHD approximation cylindrically symmetric arcades with pressure falling with radius are unstable to resistive localized modes; the growth rates, close to ideal marginal stability, are large, so that it would appear that energy could be released during 10 to 100 Alfven times. The wavelength of the modes is expected to be limited by the ion gyroradius, when stabilizing drift effects must be taken into account. The nonlinear evolution of resistive ballooning modes should be studied to assess their overall relevance to the violent and rapidly evolving phenomena observed on the sun

    Plasmoid Formation and Acceleration in the Solar Streamer Belt

    Get PDF
    The dynamical behavior of a configuration consisting of a plane fluid wake flowing in a current sheet embedded in a plasma sheet that is denser than its surroundings is discussed. This configuration is a useful model for a number of structures of astrophysical interest, such as solar coronal streamers, cometary tails, the Earth's magnetotail and Galactic center nonthermal filaments. In this paper, the results are applied to the study of the formation and initial motion of the plasma density enhancements observed by the Large-Angle Spectrometric Coronagraph (LASCO) instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. It is found that beyond the helmet cusp of a coronal streamer, the magnetized wake configuration is resistively unstable, that a traveling magnetic island develops at the center of the streamer, and that density enhancements occur within the magnetic islands. As the massive magnetic island travels outward, both its speed and width increase. The island passively traces the acceleration of the inner part of the wake. The values of the acceleration and density contrasts are in good agreement with LASCO observations

    "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    Get PDF
    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfv\`en time calculated on the macroscopic scale (Pucci and Velli (2014)). For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio (de/L)2(d_e/L)^2 where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor Radius effects are then included and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.Comment: 15 pages, 3 Figures, 1 Tabl

    Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    Full text link
    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled with a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.Comment: 33 pages, 15 figures, accepted for publication in Physics of Plasma
    • …
    corecore